Example 3. To graduate from Simplexville University, Angie needs to pass at least one of the three courses she is taking this semester: literature, finance, and statistics. Angie's busy schedule of extracurricular activities allows her to spend only 4 hours per week on studying. Angie's probability of passing each course depends on the number of hours she spends studying for the course:

	Probability of passing course			
Hours of studying per week	Literature	Finance	Statistics	
0	0.20	0.25	0.10	
1	0.30	0.30	0.30	
2	0.35	0.33	0.40	
3	0.38	0.35	0.44	
4	0.40	0.38	0.50	

Angie wants to maximize the probability that she passes at least one of these three courses. Formulate this problem as a dynamic program by giving its shortest/longest path representation.

Hint. Why is maximizing the probability of passing at least one course equivalent to minimizing the probability of failing all three courses? Note that $Pr\{passing at least 1 course \} = 1 - Pr\{failing all 3 courses\}$

Stage t: how many hours to devote to course t? Node tn: n hours left at stage t (with courses t, t+1,... remaining)

Course	Hours	Edges	Edge lengths	Course	Hours	Edges	Edge lengths
Lit	D	$(l_n, 2_n)$ for $n = 0, 1, 2, 3, 4$	09 (0.80)	Stat	D	(3n,4n) for $n=0,1,2,3,4$	09 (0.90)
Lit	l	(ln, 2n-1) for n= 1, 2, 3, 4	109(0.70)	Stat	l	(3n, 4n-1) for n= 1, 2, 3, 4	09 (0.70)
Lit	2	(In. 2n-2) for n= 2,3,4	0.65	Stat	2	(3n, 4n-2) for $n = 2, 3, 4$	0.60
Lit	3	(In. 2n-3) for n= 3,4	(0 62)	Stat	3	$(3_{11}, 4_{11}, -3)$ for $n = 3, 4$	
Lit	4	(1n, 2n-4) for n=4	109 (0.60)	Stat	4	(3n, 4n-4) for $n=4$	log (0.50)
Fin	0	$(2_{n}, 3_{n})$ for $n = 0, 1, 2, 3, 4$	09 (0.75)				
Fin	l	(2n, 3n-1) for n= 1, 2, 3, 4	09(0.70)				
Fin	2	(2n, 3n-2) for $n = 2, 3, 4$	09 (0.67)				
fin	3	(2n, 3n-3) for n= 3,4	Jeg (0.65)				
Fin	Ч	(2n, 3n-4) for $n=4$	109 (0.62)				